The nature of localization in graphene under quantum Hall conditions
نویسندگان
چکیده
Particle localization is an essential ingredient in quantum Hall physics. In conventional high-mobility two-dimensional electron systems such as in GaAs/AlGaAs semiconductor heterostructures, Coulomb interactions were shown to compete with disorder and to have a central role in particle localization. Here, we address the nature of localization in graphene where the carrier mobility, quantifying the disorder, is two to four orders of magnitude smaller than in GaAs two-dimensional electron systems. We image the electronic density of states and the localized state spectrum of a graphene flake in the quantum Hall regime with a scanning single-electron transistor. Our microscopic approach provides direct insight into the nature of localization. Surprisingly, despite strong disorder, our findings indicate that localization in graphene is not dominated by single-particle physics, but rather by a competition between the underlying disorder potential and the repulsive Coulomb interaction responsible for screening.
منابع مشابه
Edge states in graphene quantum dots: Fractional quantum Hall effect analogies and differences at zero magnetic field
We investigate the way that the degenerate manifold of midgap edge states in quasicircular graphene quantum dots with zigzag boundaries supports, under free-magnetic-field conditions, strongly correlated manybody behavior analogous to the fractional quantum Hall effect FQHE , familiar from the case of semiconductor heterostructures in high-magnetic fields. Systematic exact-diagonalization EXD n...
متن کاملStaying or going? Chirality decides!
When an electronic device is cooled to low temperature, the wavelike nature of charge carriers becomes detectable through quantum interference effects. One example is weak localization, a small decrease in the conductivity of a disordered conductor [1, 2]. Since interference depends on the quantum-mechanical phase of electronic waves, the experimental signature of weak localization has been use...
متن کاملAbstract for an Invited Paper for the MAR11 Meeting of The American Physical Society Electron Interactions in Graphene
for an Invited Paper for the MAR11 Meeting of The American Physical Society Electron Interactions in Graphene PHILIP KIM, Department of Physics, Columbia University Electrons confined in two dimensions (2D) can exhibit strongly correlated states. Recent experimental discovery of integer and fractional quantum Hall effect in graphene amplified interest in correlated 2D electronic systems, owning...
متن کاملThe potentiality of the functionalized nitrogen and thiol-doped graphene quantum dots (GQDs-N-S) to stabilize the antibodies in the designing of human chorionic gonadotropin immunosensor
In this study, for the first time, a simple immunosensor for ultrasensitive recognition of Human Chorionic Gonadotropin (hCG) in serum samples was fabricated by exploiting a simple approach. In this method, a low-cost and sensitive immunosensor was fabricated based on QDs-N-S/Au nanoparticles (NPs) modified Screen-Printed Carbon Electrode (SPCE). It seems that, QDs-N-S/Au NPs/ antibody as a bio...
متن کاملQuantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide
Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10(-9) in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by Si sublimation, under higher magnetic fields. Here, we report on a graphene devi...
متن کامل